Chemistry: The Molecular Nature of Matter and Change 7th Edition

Published by McGraw-Hill Education
ISBN 10: 007351117X
ISBN 13: 978-0-07351-117-7

Chapter 17 - Problems - Page 770: 17.47

Answer

$P_{NH_3} = 0.33 \space atm$

Work Step by Step

1. Write the $K_p$ expression: $$K_p = P_{H_2S} P_{NH_3}$$ 2. Draw the ICE table for this equilibrium: $$\begin{vmatrix} Compound& P_{ H_2S }& P_{ NH_3 }\\ Initial& 0 & 0 \\ Change& +x& +x\\ Equilibrium& 0 +x& 0 +x\\ \end{vmatrix}$$ 3. Substitute and solve for x: $$0.11 = (x)(x)$$ $$0.11 = x^2$$ $$x = \sqrt{0.11} = 0.33 \space atm$$ $P_{NH_3} = x = 0.33 \space atm$ 4. Determine if its possible to produce this pressure with 55.0 g of reactant. $$Temperature/K = 250 + 273.15 = 520 \space K$$ 5. According to the Ideal Gas Law: $$n = \frac{PV}{RT} = \frac{( 0.33 \space atm )( 5.0 \space L )}{( 0.08206 \space atm \space L \space mol^{-1} \space K^{-1} )( 520 \space K)}$$ $$n = 0.039 \space mol \space NH_3$$ 6. Calculate or find the molar mass for $ NH_4HS $: $ NH_4HS $ : ( 1.008 $\times$ 5 )+ ( 14.01 $\times$ 1 )+ ( 32.07 $\times$ 1 )= 51.12 g/mol - Using the molar mass as a conversion factor, find the amount in moles: $$ 55.0 \space g \space NH_4HS \times \frac{1 \space mole}{ 51.12 \space g} = 1.08 \space moles \space NH_4HS$$ Yes, 1.08 mol of $NH_4HS$ can produce $0.039$ mol $NH_3$, so the answer is correct, 0.33 atm.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.