Chemistry: The Central Science (13th Edition)

Published by Prentice Hall
ISBN 10: 0321910419
ISBN 13: 978-0-32191-041-7

Chapter 16 - Acid-Base Equilibria - Exercises - Page 720: 16.79c

Answer

$[OH^-] = 3.3 \times 10^{- 6}M $ $pH = 8.52$

Work Step by Step

- Identify the significant electrolytes in the solution: - $0.10M$ $Na^+$: Insignificant - $0.10M$ $N{O_2}^-$: Weak base - $0.20M$ $Ca^{2+}$: Insignificant - $0.40M$** $N{O_2}^-$: Weak base ** 0.20M * 2 (Number of $N{O_2}$ in $Ca(NO_3)_2$ 0.10M + 0.40M =$ 0.50M$ $N{O_2}^-$ Calculate the pH of a $ 0.50M$ $N{O_2}^-$ solution. 1. Since $N{O_2}^-$ is the conjugate base of $HNO_2$ , we can calculate its kb by using this equation: $K_a * K_b = K_w = 10^{-14}$ $ 4.5\times 10^{- 4} * K_b = 10^{-14}$ $K_b = \frac{10^{-14}}{ 4.5\times 10^{- 4}}$ $K_b = 2.222\times 10^{- 11}$ 2. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[OH^-] = [HNO_2] = x$ -$[N{O_2}^-] = [N{O_2}^-]_{initial} - x = 0.5 - x$ For approximation, we consider: $[N{O_2}^-] = 0.5M$ 3. Now, use the Kb value and equation to find the 'x' value. $Kb = \frac{[OH^-][HNO_2]}{ [N{O_2}^-]}$ $Kb = 2.222 \times 10^{- 11}= \frac{x * x}{ 0.5}$ $Kb = 2.222 \times 10^{- 11}= \frac{x^2}{ 0.5}$ $ 1.111 \times 10^{- 11} = x^2$ $x = 3.333 \times 10^{- 6}$ Percent ionization: $\frac{ 3.333 \times 10^{- 6}}{ 0.5} \times 100\% = 0.0006667\%$ %ionization < 5% : Right approximation. Therefore: $[OH^-] = [HNO_2] = x = 3.333 \times 10^{- 6}M $ $[N{O_2}^-] \approx 0.5M$ 4. Calculate the pH: $pOH = -log[OH^-]$ $pOH = -log( 3.333 \times 10^{- 6})$ $pOH = 5.477$ $pH + pOH = 14$ $pH + 5.477 = 14$ $pH = 8.523$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.