## Chemistry: Molecular Approach (4th Edition)

$\underline{\text{7}\text{.6 g/c}{{m}^{3}}\text{ }}$
Radius of cylinder is in inches (in); convert it into centimeter (cm) as follows: \begin{align} & 1\text{ in}=\text{2}\text{.54 cm} \\ & r=\frac{\left( 0.22\text{ in} \right)\left( \text{2}\text{.54 cm} \right)}{1\text{ in}} \\ & =0.559\text{ cm} \end{align} Similarly, length of cylinder is in inches (in); convert it into centimeters (cm) as follows: \begin{align} & 1\text{ in}=\text{2}\text{.54 cm} \\ & l=\frac{\left( \text{2}\text{.16 in} \right)\left( \text{2}\text{.54 cm} \right)}{1\text{ in}} \\ & =5.49\text{ cm} \end{align} Calculate volume of cylinder as follows: \begin{align} & V=\pi {{r}^{2}}l \\ & =\left( \frac{22}{7} \right){{\left( 0.559\text{ cm} \right)}^{2}}\left( 5.49\text{ cm} \right) \\ & =5.39\text{ c}{{\text{m}}^{3}} \end{align} Calculate density as follows: \begin{align} & d=\frac{m}{V} \\ & =\frac{41\text{ g}}{5.39\text{ c}{{\text{m}}^{3}}} \\ & =7.6\text{ g/c}{{\text{m}}^{3}} \end{align} Density of steel is $\underline{\text{7}\text{.6 g/c}{{\text{m}}^{3}}\text{ }}$.