## Chemistry: Molecular Approach (4th Edition)

(a)$\underline{1.9\times \text{1}{{\text{0}}^{4}}\text{ g and 3}\text{.0}\times \text{1}{{\text{0}}^{3}}\text{ g }}$ (b) Yes
(a) The volume of a cylinder is as follows: \begin{align} & V=\pi {{r}^{2}}h \\ & =\left( \frac{22}{7} \right){{\left( 3.8\text{ cm} \right)}^{2}}\left( 22\text{ cm} \right) \\ & =998.4\text{ c}{{\text{m}}^{3}} \end{align} Calculate mass as follows: $m=dV$ Mass of gold cylinder will be as follows: \begin{align} & m=\left( 19.3\text{ g/c}{{\text{m}}^{3}} \right)\left( \text{998}\text{.4 c}{{\text{m}}^{3}} \right) \\ & =1.9\times {{10}^{4}}\text{ g} \end{align} Mass of sand cylinder will be as follows: \begin{align} & m=\left( \text{3}\text{.0 g/c}{{\text{m}}^{3}} \right)\left( \text{998}\text{.4 c}{{\text{m}}^{3}} \right) \\ & =3.0\times {{10}^{3}}\text{ g} \end{align} Mass of gold cylinder and that of sand cylinder are $\underline{1.9\times \text{1}{{\text{0}}^{4}}\text{ g and 3}\text{.0}\times \text{1}{{\text{0}}^{3}}\text{ g }}$. (b) The mass of sand is $\text{3}\text{.0}\times \text{1}{{\text{0}}^{3}}\text{ g}$ and that of gold cylinder is $1.9\times \text{1}{{\text{0}}^{4}}\text{ g}$. Yes, the thief sets off the alarm