Chemistry and Chemical Reactivity (9th Edition)

Published by Cengage Learning
ISBN 10: 1133949649
ISBN 13: 978-1-13394-964-0

Chapter 17 Principles of Chemical Reactivity: Other Aspects of Aqueous Equilibria - Study Questions - Page 677c: 57

Answer

Pure water: $1.0 \times 10^{-6}M = Solubility$ $0.010M NaSCN:$ $1.0 \times 10^{-10}M = Solubility$

Work Step by Step

1. Write the $K_{sp}$ expression: $ AgSCN(s) \lt -- \gt 1Ag^{+}(aq) + 1SCN^{-}(aq)$ $1.0 \times 10^{-12} = [Ag^{+}]^ 1[SCN^{-}]^ 1$ 2. Considering a pure solution: $[Ag^{+}] = 1S$ and $[SCN^{-}] = 1S$ $1.0 \times 10^{-12}= ( 1S)^ 1 \times ( 1S)^ 1$ $1.0 \times 10^{-12} = 1S^ 2$ $1.0 \times 10^{-12} = S^ 2$ $ \sqrt [ 2] {1.0 \times 10^{-12}} = S$ $1.0 \times 10^{-6} = S$ - This is the molar solubility value for this salt. --------------- 3. Write the $K_{sp}$ expression: $ AgSCN(s) \lt -- \gt 1SCN^{-}(aq) + 1Ag^{+}(aq)$ $1.0 \times 10^{-12} = [SCN^{-}]^ 1[Ag^{+}]^ 1$ $1.0 \times 10^{-12} = (0.01 + S)^ 1( 1S)^ 1$ 4. Find the molar solubility. Since 'S' has a very small value, we can approximate: $[SCN^{-}] = 0.01$ $1.0 \times 10^{-12}= (0.01)^ 1 \times ( 1S)^ 1$ $ \frac{1.0 \times 10^{-12}}{0.01} = ( 1S)^ 1$ $1.0 \times 10^{-10} = S$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.