Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 15 - Sections 15.1-15.12 - Exercises - Problems by Topic - Page 747: 78b

Answer

Percent ionization = $9.512 \%$ pH = 2.022

Work Step by Step

1. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[H_3O^+] = [Conj. Base] = x$ -$[Acid] = [Acid]_{initial} - x = 0.1 - x$ For approximation, we consider: $[Acid] = 0.1M$ 2. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][Conj. Base]}{ [Acid]}$ $Ka = 1 \times 10^{- 3}= \frac{x * x}{ 0.1}$ $Ka = 1 \times 10^{- 3}= \frac{x^2}{ 0.1}$ $ 1 \times 10^{- 4} = x^2$ $x = 1 \times 10^{- 2}$ Percent ionization: $\frac{ 1 \times 10^{- 2}}{ 0.1} \times 100\% = 10\%$ %ionization > 5% : Inappropriate approximation, so, we will have to consider the '-x' in the acid concentration: $Ka = 1 \times 10^{- 3}= \frac{x^2}{ 0.1- x}$ $ 1 \times 10^{- 4} - 1 \times 10^{- 3}x = x^2$ $ 1 \times 10^{- 4} - 1 \times 10^{- 3}x - x^2 = 0$ Bhaskara: $\Delta = (- 1 \times 10^{- 3})^2 - 4 * (-1) *( 1 \times 10^{- 4})$ $\Delta = 1 \times 10^{- 6} + 4 \times 10^{- 4} = 4.01 \times 10^{- 4}$ $x_1 = \frac{ - (- 1 \times 10^{- 3})+ \sqrt { 4.01 \times 10^{- 4}}}{2*(-1)}$ or $x_2 = \frac{ - (- 1 \times 10^{- 3})- \sqrt { 4.01 \times 10^{- 4}}}{2*(-1)}$ $x_1 = - 1.051 \times 10^{- 2} (Negative)$ $x_2 = 9.512 \times 10^{- 3}$ - The concentration can't be negative, so $[H_3O^+]$ = $x_2$ - Percent ionization = $\frac{9.512 \times 10^{-3}}{0.1} \times 100\% = 9.512\%$ 3. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 9.512 \times 10^{- 3})$ $pH = 2.022$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.