Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 8 - Complex Numbers, Polar Equations, and Parametric Equations - Section 8.1 Complex Numbers - 8.1 Exercises: 61

Answer

$$-i\sqrt2-2-(6-4i\sqrt2)-(5-i\sqrt2)=-13+4i\sqrt2$$

Work Step by Step

$$A=-i\sqrt2-2-(6-4i\sqrt2)-(5-i\sqrt2)$$ $$A=-i\sqrt2-2-6+4i\sqrt2-5+i\sqrt2$$ Now, adding or subtracting complex number means we add and subtract the real parts and the imaginary parts separately. In other words, the real parts are put into a parenthesis, while the imagine parts are put into another parenthesis to do the math separately. $$A=(-2-6-5)+(-i\sqrt2+4i\sqrt2+i\sqrt2)$$ $$A=-13+(-\sqrt2+4\sqrt2+\sqrt2)i$$ $$A=-13+(4\sqrt2)i$$ $$A=-13+4i\sqrt2$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.