Answer
No, it would not be unusual.
Work Step by Step
$P(fewer~than~4)=P(x\lt4)=P(0)+P(1)+P(2)+P(3)=\frac{(0.3\times5)^0}{0!}e^{-0.3\times5}+\frac{(0.3\times5)^1}{1!}e^{-0.3\times5}+\frac{(0.3\times5)^2}{2!}e^{-0.3\times5}+\frac{(0.3\times5)^3}{3!}e^{-0.3\times5}=\frac{1}{1}e^{-1.5}+\frac{1.5}{1}e^{-1.5}+\frac{2.25}{2}e^{-1.5}+\frac{3.375}{6}e^{-1.5}=0.934$
The probability that there will be 4 or more (at least 4) insect fragments in a 5-gram sample is the complement of the probability that there will be fewer than 4 insect fragments in a 5-gram sample.
Using the Complement Rule (see page 275):
$P(at~least~4)=P(x\geq4)=1-P(x\lt4)=1-0.934=0.066$
$P(at~least~4)\gt0.05$. So, it is not an unusual event.