Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Section 5.3 - Assess Your Understanding - Applying the Concepts - Page 285: 21c

Answer

5 components.

Work Step by Step

The event "the system will succeed" is the complement of "the system will not succeed". So, : $P(the~system~will~succeed)=1-P(the~system~will~not~succeed)$ We want that: $P(the~system~will~succeed)\gt0.9999$ $1-P(the~system~will~not~succeed)\gt0.9999$ $-P(the~system~will~not~succeed)\gt0.9999-1$ $-P(the~system~will~not~succeed)\gt-0.0001$ $P(the~system~will~not~succeed)\lt0.0001$ - 2 components fail (a): $P(two~components~fail)=0.0225\gt0.0001$ - 3 components fail (a): $P(3~components~fail)=P(component~1~fail)\times P(component~2~fail)\times P(component~3~fail)=0.15\times0.15\times0.15=0.003375\gt0.0001$ - 4 components fail (a): $P(4~components~fail)=P(component~1~fail)\times P(component~2~fail)\times P(component~3~fail)\times P(component~4~fail)=0.15\times0.15\times0.15\times0.15=0.00050625\gt0.0001$ - 5 components fail (a): $P(5~components~fail)=P(component~1~fail)\times P(component~2~fail)\times P(component~3~fail)\times P(component~4~fail)\times P(component~5~fail)=0.15\times0.15\times0.15\times0.15\times0.15=0.0000759375\lt0.0001$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.