Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Review - Review Exercises - Page 316: 26c

Answer

$P(no~Merlot)=\frac{7}{44}\approx0.1591$

Work Step by Step

The order in which the bottles are selected does not matter and no bottle can be selected more than once. Now we have no Merlot and 3 Cabernet. The number of combinations of 7 distinct bottles of Cabernet taken 3 at a time: $_7C_3=\frac{7!}{3!(7-3)!}=\frac{7!}{3!\times4!}=\frac{7\times6\times5\times4\times3\times2\times1}{3\times2\times1\times4\times3\times2\times1}=35$ The number of combinations of 12 distinct bottles (5 Merlot and 7 Cabernet) taken 3 at a time: $N(S)=~_{12}C_3=\frac{12!}{3!(12-3)!}=\frac{12!}{3!\times9!}=\frac{12\times11\times10\times9\times8\times7\times6\times5\times4\times3\times2\times1}{3\times2\times1\times9\times8\times7\times6\times5\times4\times3\times2\times1}=\frac{12\times11\times10}{3\times2\times1}=220$ Using the Classical Method (page 259): $P(none~is~a~Merlot)=P(3~Cabernet)=\frac{N(3~Cabernet)}{N(S)}=\frac{35}{220}=\frac{7}{44}\approx0.1591$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.