Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 5 - Review - Review Exercises - Page 316: 26b

Answer

$P(exactly~two~are~Merlot)=\frac{7}{22}\approx0.3182$

Work Step by Step

The order in which the bottles are selected does not matter and no bottle can be selected more than once. Now we have 2 Merlot and 1 Cabernet. The number of combinations of 5 distinct bottles of Merlot taken 2 at a time: $_5C_2=\frac{5!}{2!(5-2)!}=\frac{5!}{2!\times3!}=\frac{5\times4\times3\times2\times1}{2\times6}=10$ The number of combinations of 7 distinct bottles of Cabernet taken 1 at a time: $_7C_1=\frac{7!}{1!(7-1)!}=\frac{7!}{1!\times6!}=\frac{7\times6\times5\times4\times3\times2\times1}{1\times6\times5\times4\times3\times2\times1}=7$ Using the Multiplication Rule of Counting (page 298): $N(two~are~Merlot~and~one~is~Cabernet)=10\times7=70$ The number of combinations of 12 distinct bottles (5 Merlot and 7 Cabernet) taken 3 at a time: $N(S)=~_{12}C_3=\frac{12!}{3!(12-3)!}=\frac{12!}{3!\times9!}=\frac{12\times11\times10\times9\times8\times7\times6\times5\times4\times3\times2\times1}{3\times2\times1\times9\times8\times7\times6\times5\times4\times3\times2\times1}=\frac{12\times11\times10}{3\times2\times1}=220$ Using the Classical Method (page 259): $P(exactly~two~are~Merlot)=P(two~are~Merlot~and~one~is~Cabernet)=\frac{N(two~are~Merlot~and~one~is~Cabernet)}{N(S)}=\frac{70}{220}=\frac{7}{22}\approx0.3182$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.