An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.4 Continuous Random Variables - Questions - Page 136: 8

Answer

$\color{blue}{F_Y(y) = \begin{cases} 0, & y \lt 0 \\ 1 - e^{\lambda y}, & y \ge 0 \end{cases}} $

Work Step by Step

$\begin{align*} F_Y(y) &= P(Y\le y) \\ &= \int^y_{-\infty} f_Y(u)\ du \\ &= \begin{cases} \displaystyle \int^y_{-\infty} 0 \ du, & y \lt 0 \\ \displaystyle\int^0_{-\infty} 0\ du + \int^y_0 \lambda e^{\lambda u}\ du, & y \ge 0 \end{cases} \\ &= \begin{cases} 0, & y \lt 0 \\ 0 + \left( \lambda \dfrac{e^{-\lambda u}}{-\lambda}\right]_0^y, & y \ge 0 \end{cases} \\ &= \begin{cases} 0, & y \lt 0 \\ \left( -e^{-\lambda u}\right]_0^y, & y \ge 0 \end{cases} \\ &= \begin{cases} 0, & y \lt 0 \\ \left(-e^{-\lambda y} -(- e^{0})\right), & y \ge 0 \end{cases} \\ \color{blue}{F_Y(y)} &\color{blue}{= \begin{cases} 0, & y \lt 0 \\ 1 - e^{\lambda y}, & y \ge 0 \end{cases}} \\ \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.