Section Navigation

An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.4 Continuous Random Variables - Questions - Page 136: 14

Answer

$\color{blue}{F_Y(y) = \begin{cases} 0,& y\lt 0 \\ 1 -e^{-y} -ye^{-y}, & y\ge 0 \end{cases}}$

Work Step by Step

$\begin{align*} F_Y(y) &= \int_{-\infty}^y f_Y(u)\ du \\ &= \begin{cases} \displaystyle \int_{-\infty}^y 0\ du,& y\lt 0\\ \displaystyle \int_{-\infty}^0 0\ du + \underbrace{\int_0^y ue^{-u}\ du}_{\begin{array}{rl} \text{Use integration} & \text{by parts} \\ m=u & dn=e^{-u}\ du \\ dm=du & n=-e^{-u} \end{array}}, &y\ge 0 \end{cases} \\ &= \begin{cases} 0,& y\lt 0 \\ \displaystyle 0 + \left. -ue^{-u}\right]_0^y - \int_0^y (-e^{-u})\ du, & y\ge 0 \end{cases} \\ &= \begin{cases} 0,& y\lt 0 \\ \displaystyle (-ye^{-y} - 0) + \left( -e^{-u}\right]_0^y, & y\ge 0 \end{cases} \\ &= \begin{cases} 0,& y\lt 0 \\ \displaystyle -ye^{-y} + \left( -e^{-y} - (-e^0) \right), & y\ge 0 \end{cases} \\ \color{blue}{F_Y(y)} &\color{blue}{= \begin{cases} 0,& y\lt 0 \\ 1 -e^{-y} -ye^{-y}, & y\ge 0 \end{cases}} \\ \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.