An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.4 Continuous Random Variables - Questions - Page 136: 4

Answer

$\color{blue}{\dfrac{26}{27}}$

Work Step by Step

$\begin{align*} P( Y\gt 1) &= \int_1^\infty f_Y(y)\ dy \\ &= \int_1^3 \frac{1}{9}y^2\ dy + \int_3^\infty 0\ dx \\ &= \left[ \frac{1}{9}\frac{y^3}{3}\right]_1^3 + 0 \\ &= \left[ \frac{1}{27}y^3\right]_1^3 \\ &= \frac{1}{27}(3^3-1^3) \\ &= \frac{1}{27}(27-1) \\ \color{blue}{P(Y\gt 1)} &\color{blue}{= \frac{26}{27}} \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.