An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.4 Continuous Random Variables - Questions - Page 136: 10

Answer

$\color{blue}{5/16}$

Work Step by Step

$\underline{\text{Using cdf}}$ $\begin{align*} P({\scriptsize \frac{1}{2}} \lt Y\lt {\scriptsize\frac{3}{4}}) &= P({\scriptsize \frac{1}{2}} \lt Y\lt {\scriptsize\frac{3}{4}}) + 0 \\ &= P({\scriptsize \frac{1}{2}} \lt Y\lt {\scriptsize\frac{3}{4}}) + P(Y={\scriptsize\frac{3}{4}}) \\ &= P({\scriptsize \frac{1}{2}} \lt Y\le {\scriptsize\frac{3}{4}}) \\ &= F_Y({\scriptsize\frac{3}{4}}) - F_Y({\scriptsize\frac{1}{2}}) \\ &= (3/4)^2 - (1/2)^2 \\ &= 9/16 - 1/4 \\ &= (9-4)/16 \\ \color{blue}{P({\scriptsize \frac{1}{2}} \lt Y\lt {\scriptsize\frac{3}{4}})} &\color{blue}{= 5/16} \end{align*}$ $\underline{\text{Using pdf}}$ $\begin{align*} P({\scriptsize \frac{1}{2}} \lt Y\lt {\scriptsize\frac{3}{4}}) &= \int_{1/2}^{3/4} f_Y(y)\ dy \\ &= \int_{1/2}^{3/4} \frac{dF_Y(y)}{dy}\ dy \\ &= \int_{1/2}^{3/4} \frac{d}{dy}y^2\ dy \\ &= \int_{1/2}^{3/4} 2y\ dy \\ &= \left. 2\cdot \dfrac{y^2}{2}\right]_{1/2}^{3/4} \\ &= \left. y^2\right]_{1/2}^{3/4} \\ &= ((3/4)^2 - (1/2)^2) \\ &= 9/16 - 1/4 \\ &= (9-4)/16 \\ \color{blue}{P({\scriptsize \frac{1}{2}} \lt Y\lt {\scriptsize\frac{3}{4}})} &\color{blue}{= 5/16}\end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.