Answer
$\color{blue}{1/16}$ or $\color{blue}{0.0625}$
Work Step by Step
Using Def. 3.4.2,
$\begin{align*}
P\left(0\le X\le \frac{1}{2}\right) &= \int_0^{1/2} 4y^3\ dy \\
&= \left[ 4\cdot \dfrac{y^4}{4} \right]_0^{1/2} \\
&= \left[ y^4\right]_0^{1/2} \\
&= (1/2)^4 - 0^4 \\
&= 1/2^4 - 0 \\
\color{blue}{P\left(0\le X\le \frac{1}{2}\right)} &\color{blue}{= 1/16 \;=\; 0.0625}
\end{align*}$