An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.4 Continuous Random Variables - Questions - Page 136: 2

Answer

$\color{blue}{\dfrac{5}{16}}\quad$ or $\quad \color{blue}{0.3125}$

Work Step by Step

Using Def. 3.4.2, $\begin{align*} P\left(\frac{3}{4} \le Y\le 1\right) &= \int_{3/4}^1 \left(\dfrac{2}{3} +\dfrac{2}{3}y\right)\ dy \\ &= \left[ \dfrac{2}{3}y + \dfrac{2}{3}\dfrac{y^2}{2}\right]_{3/4}^1 \\ &= \left[ \dfrac{2}{3}y + \dfrac{1}{3}y^2\right]_{3/4}^1 \\ &= \dfrac{2}{3}(1-3/4) + \dfrac{1}{3}(1^2-(3/4)^2) \\ &= \dfrac{2}{3}\cdot\dfrac{1}{4} + \dfrac{1}{3}(1 - 9/16) \\ &= \dfrac{1}{6} + \dfrac{1}{3}(7/16) \\ &= \dfrac{8}{48} + \dfrac{7}{48} \\ &= \dfrac{15}{48} \\ \color{blue}{P\left(\frac{3}{4} \le Y\le 1\right)} &\color{blue}{= \dfrac{5}{16} \;=\; 0.3125} \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.