Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.5 - More Trigonometric Equations - 7.5 Exercises - Page 574: 15

Answer

$2k\pi$

Work Step by Step

$\tan \theta+1=\sec \theta$ $\frac{\sin\theta}{\cos\theta}+1=\frac{1}{\cos \theta}$ Multiply both sides by $\cos \theta$: $\sin \theta+\cos \theta=1$ $\sin(2\times\frac{\theta}{2})+\cos(2\times\frac{\theta}{2})=1$ $2\sin\frac{\theta}{2}\cos\frac{\theta}{2}+1-2\sin^2\frac{\theta}{2}=1$ $2\sin\frac{\theta}{2}\cos \frac{\theta}{2}-2\sin^2\frac{\theta}{2}=0$ $2\sin\frac{\theta}{2}(\cos \frac{\theta}{2}-\sin \frac{\theta}{2})=0$ If $2\sin \frac{\theta}{2}=0$, then $\sin \frac{\theta}{2}=0$. This means that $\frac{\theta}{2}=k\pi$, so $\theta=2k\pi$. If $\cos\frac{\theta}{2}-\sin\frac{\theta}{2}=0$, then $\cos \frac{\theta}{2}=\sin \frac{\theta}{2}$. This means that $\frac{\theta}{2}=\frac{\pi}{4}+k\pi$, so $\theta=\frac{\pi}{2}+2k\pi$. However, $\theta=\frac{\pi}{2}+2k\pi$ would make $\tan \theta$ and $\sec \theta$ undefined in the original equation, so we reject this solution, and the only solution is $\theta=2k\pi$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.