Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.5 - More Trigonometric Equations - 7.5 Exercises - Page 574: 14

Answer

$2k\pi$, $\frac{3\pi}{2}+2k\pi$

Work Step by Step

$\cos \theta-\sin\theta=1$ $\cos(2*\frac{\theta}{2})-\sin(2*\frac{\theta}{2})=1$ $1-2\sin^2\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}=1$ $-2\sin^2\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}=0$ $2\sin^2\frac{\theta}{2}+2\sin\frac{\theta}{2}\cos\frac{\theta}{2}=0$ $2\sin\frac{\theta}{2}(\sin \frac{\theta}{2}+\cos \frac{\theta}{2})=0$ If $2\sin\frac{\theta}{2}=0$, then $\sin \frac{\theta}{2}=0$. So $\frac{\theta}{2}=k\pi$, which means $\theta=2k\pi$. If $\sin\frac{\theta}{2}+\cos\frac{\theta}{2}=0$, then $\sin\frac{\theta}{2}=-\cos\frac{\theta}{2}$. This means that $\frac{\theta}{2}=\frac{3\pi}{4}+k\pi$, so $\theta=\frac{3\pi}{2}+2k\pi$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.