Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.5 - More Trigonometric Equations - 7.5 Exercises - Page 574: 13

Answer

$(2k+1)\pi$, $\frac{\pi}{2}+2k\pi$

Work Step by Step

$\sin \theta-1=\cos \theta$ $\sin (2*\frac{\theta}{2})-1=\cos (2*\frac{\theta}{2})$ $2\sin \frac{\theta}{2}\cos \frac{\theta}{2}-1=2\cos^2\frac{\theta}{2}-1$ $2\sin \frac{\theta}{2}\cos \frac{\theta}{2}-2\cos^2\frac{\theta}{2}=0$ $2\cos\frac{\theta}{2}(\sin \frac{\theta}{2}-\cos\frac{\theta}{2})=0$ If $2\cos\frac{\theta}{2}=0$, then $\cos\frac{\theta}{2}=0$. So $\frac{\theta}{2}=\frac{\pi}{2}+k\pi$, which means that $\theta=\pi+2k\pi=(2k+1)\pi$. If $\sin \frac{\theta}{2}-\cos\frac{\theta}{2}=0$, then $\sin \frac{\theta}{2}=\cos\frac{\theta}{2}$. So $\frac{\theta}{2}=\frac{\pi}{4}+k\pi$, which means $\theta=\frac{\pi}{2}+2k\pi$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.