Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Review - Exercises - Page 579: 61

Answer

$\frac{2}{3}(\sqrt 5+\sqrt 2)$

Work Step by Step

Given $x,y$ in Quadrant I and $sec(x)=\frac{3}{2}, csc(y)=3$, use the Pythagorean Identities, we have $tan^2x+1=sec^2x=\frac{9}{4}$ or $tan^2x=\frac{5}{4}, tan(x)=\frac{\sqrt 5}{2}$, and $1+cot^2y=csc^2y=9$ or $cot^2y=8, tan(y)=\sqrt {\frac{1}{8}}=\frac{\sqrt 2}{4}$. Thus $tan(x+y)=\frac{tan(x)+tan(y)}{1-tan(x)tan(y)} =\frac{\frac{\sqrt 5}{2}+\frac{\sqrt 2}{4}}{1-\frac{\sqrt 5}{2}\times \frac{\sqrt 2}{4}} =\frac{4\sqrt 5+2\sqrt 2}{8-\sqrt {10}} =\frac{2(2\sqrt 5+\sqrt 2)(8+\sqrt {10})}{(8-\sqrt {10})(8+\sqrt {10})} =\frac{2}{64-10}(16\sqrt 5+10\sqrt 2+8\sqrt 2+2\sqrt 5)=\frac{2}{54}(18\sqrt 5+18\sqrt 2) =\frac{2}{3}(\sqrt 5+\sqrt 2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.