Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Review - Exercises - Page 578: 8

Answer

$(1-\tan x)(1-\cot x)=2-\sec x\csc x$

Work Step by Step

$(1-\tan x)(1-\cot x)=2-\sec x\csc x$ Evaluate the product on the left side: $1-\cot x-\tan x+\tan x\cot x=2-\sec x\csc x$ Substitute $\tan x$ by $\dfrac{\sin x}{\cos x}$ and $\cot x$ by $\dfrac{\cos x}{\sin x}$: $1-\dfrac{\cos x}{\sin x}-\dfrac{\sin x}{\cos x}+\Big(\dfrac{\sin x}{\cos x}\Big)\Big(\dfrac{\cos x}{\sin x}\Big)=2-\sec x\csc x$ Evaluate the product on the left side: $1-\dfrac{\cos x}{\sin x}-\dfrac{\sin x}{\cos x}+\dfrac{\sin x\cos x}{\sin x\cos x}=2-\sec x\csc x$ $1+1-\dfrac{\cos x}{\sin x}-\dfrac{\sin x}{\cos x}=2-\sec x\csc x$ $2-\dfrac{\cos x}{\sin x}-\dfrac{\sin x}{\cos x}=2-\sec x\csc x$ Take out common factor $-1$ from the fractions on the left side: $2-\Big(\dfrac{\cos x}{\sin x}+\dfrac{\sin x}{\cos x}\Big)=2-\sec x\csc x$ Evaluate the sum inside the parentheses: $2-\dfrac{\sin^{2}x+\cos^{2}x}{\sin x\cos x}=2-\sec x\csc x$ Substitute $\sin^{2}x+\cos^{2}x$ by $1$: $2-\dfrac{1}{\sin x\cos x}=2-\sec x\csc x$ Rewrite the fraction on the left side as $\Big(\dfrac{1}{\sin x}\Big)\Big(\dfrac{1}{\cos x}\Big)$: $2-\Big(\dfrac{1}{\sin x}\Big)\Big(\dfrac{1}{\cos x}\Big)=2-\sec x\csc x$ Since $\dfrac{1}{\sin x}=\csc x$ and $\dfrac{1}{\cos x}=\sec x$, the identity is proved: $2-\sec x\csc x=2-\sec x\csc x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.