Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Review - Exercises - Page 578: 10

Answer

$(\tan x+\cot x)^{2}=\csc^{2}x\sec^{2}x$

Work Step by Step

$(\tan x+\cot x)^{2}=\csc^{2}x\sec^{2}x$ Evaluate the power on the left side: $\tan^{2}x+2\tan x\cot x+\cot^{2}x=\csc^{2}x\sec^{2}x$ Substitute $\tan^{2}x$ by $\sec^{2}x-1$ and $\cot^{2}x$ by $\csc^{2}x-1$. Also substitute $\tan x$ by $\dfrac{\sin x}{\cos x}$ and $\cot x$ by $\dfrac{\cos x}{\sin x}$, then simplify: $\sec^{2}x-1+2\Big(\dfrac{\sin x}{\cos x}\Big)\Big(\dfrac{\cos x}{\sin x}\Big)+\csc^{2}x-1=\csc^{2}x\sec^{2}x$ $\sec^{2}x-2+2(1)+\csc^{2}x=\csc^{2}x\sec^{2}x$ $\sec^{2}x+\csc^{2}x=\csc^{2}x\sec^{2}x$ Substitute $\sec^{2}x$ by $\dfrac{1}{\cos^{2}x}$ and $\csc^{2}x$ by $\dfrac{1}{\sin^{2}x}$: $\dfrac{1}{\cos^{2}x}+\dfrac{1}{\sin^{2}x}=\csc^{2}x\sec^{2}x$ Evaluate the sum on the left side: $\dfrac{\sin^{2}x+\cos^{2}x}{\sin^{2}x\cos^{2}x}=\csc^{2}x\sec^{2}x$ Substitute $\sin^{2}x+\cos^{2}x$ by $1$: $\dfrac{1}{\sin^{2}x\cos^{2}x}=\csc^{2}x\sec^{2}x$ Rewrite the left side as $\Big(\dfrac{1}{\sin^{2}x}\Big)\Big(\dfrac{1}{\cos^{2}x}\Big)$: $\Big(\dfrac{1}{\sin^{2}x}\Big)\Big(\dfrac{1}{\cos^{2}x}\Big)=\csc^{2}x\sec^{2}x$ Since $\dfrac{1}{\sin^{2}x}=\csc^{2}x$ and $\dfrac{1}{\cos^{2}x}=\sec^{2}x$, the identity is proved. $\csc^{2}x\sec^{2}x=\csc^{2}x\sec^{2}x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.