Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Review - Exercises - Page 578: 6

Answer

$\dfrac{1+\sec x}{\sec x}=\dfrac{\sin^{2}x}{1-\cos x}$

Work Step by Step

$\dfrac{1+\sec x}{\sec x}=\dfrac{\sin^{2}x}{1-\cos x}$ Substitute $\sin^{2}x$ by $1-\cos^{2}x$: $\dfrac{1+\sec x}{\sec x}=\dfrac{1-\cos^{2}x}{1-\cos x}$ Factor the numerator on the right side: $\dfrac{1+\sec x}{\sec x}=\dfrac{(1-\cos x)(1+\cos x)}{1-\cos x}$ Simplify the right side: $\dfrac{1+\sec x}{\sec x}=1+\cos x$ Rewrite the left side as $\dfrac{1}{\sec x}+\dfrac{\sec x}{\sec x}$ and simplify it: $\dfrac{1}{\sec x}+1=1+\cos x$ Substitute $\sec x$ by $\dfrac{1}{\cos x}$: $1+\dfrac{1}{\Big(\dfrac{1}{\cos x}\Big)}=1+\cos x$ Evaluate the division on the left side and the identity will be proved: $1+\cos x=1+\cos x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.