Answer
$-\frac{1}{2}$, multiplicity=1, $-\frac{1}{3}$, multiplicity=2.
Work Step by Step
1. List all possible rational zeros $\pm1,\pm1/2,\pm1/3,\pm1/6,\pm1/18$
2. Use synthetic division or remainder theorem to find one zero as $1/2$
3. Factorize $P(x)=(2x+1)(9x^2+6x+1)=(2x+1)(3x+1)^2$
4. Zeros: $-1/2$ multiplicity=1, $-1/3$ multiplicity=2.