Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 12 - Section 12.3 - Geometric Sequences - 12.3 Exercises - Page 866: 96

Answer

a. $\approx 99.9$ mg b. $100$ mg

Work Step by Step

a. Recognize $S_{n}=\displaystyle \sum_{k=1}^{n}50(\frac{1}{2})^{k-1} $ as the nth partial sum of a geometric sequence $a_{n}=ar^{n-1}$, where a=50, $r=\displaystyle \frac{1}{2}.$ $S_{n}=a\displaystyle \cdot\frac{1-r^{n}}{1-r}$. For n=10 $S_{10}=50\displaystyle \cdot\frac{1-(\frac{1}{2})^{10}}{1-\frac{1}{2}}\approx 99.9$ mg b. Recognize $\displaystyle \sum_{k=1}^{\infty}50(\frac{1}{2})^{k-1}$ as an infinite geometric series for which a=50, $r=\displaystyle \frac{1}{2}.$ $|r| < 1$, so the series converges to $S=\displaystyle \frac{a}{1-r}=\frac{50}{1-\frac{1}{2}}=100$ mg
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.