Answer
$(2,3)$
Work Step by Step
Based on the given equations, we have $D=\begin{vmatrix} 2 & 3\\ 3 & -2 \end{vmatrix}=2(-2)-(3)(3)=-13$,
Use the Cramer’s Rule, we have
$D_x=\begin{vmatrix} 13 & 3\\ 0 & -2 \end{vmatrix}=13(-2)-(3)(0)=-26$,
$D_y=\begin{vmatrix} 2 & 13\\ 3 & 0 \end{vmatrix}=2(0)-(13)(3)=-39$,
Thus $x=\frac{D_x}{D}=2, y=\frac{D_y}{D}=3$ or $(2,3)$