Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.4 Partial Fractions - 9.4 Exercises - Page 895: 39

Answer

$$\frac{2}{x} + \frac{3}{{x + 2}} - \frac{1}{{x - 1}}$$

Work Step by Step

$$\eqalign{ & \frac{{4{x^2} - 3x - 4}}{{{x^3} + {x^2} - 2x}} \cr & {\text{Factor the denominator}} \cr & \frac{{4{x^2} - 3x - 4}}{{{x^3} + {x^2} - 2x}} = \frac{{4{x^2} - 3x - 4}}{{x\left( {x + 2} \right)\left( {x - 1} \right)}} \cr & {\text{Decompose }}\frac{{4{x^2} - 3x - 4}}{{x\left( {x + 2} \right)\left( {x - 1} \right)}}{\text{ into partial fractions}} \cr & \frac{{4{x^2} - 3x - 4}}{{x\left( {x + 2} \right)\left( {x - 1} \right)}} = \frac{A}{x} + \frac{B}{{x + 2}} + \frac{C}{{x - 1}} \cr & \cr & {\text{Multiply each side by }}x\left( {x + 2} \right)\left( {x - 1} \right) \cr & 4{x^2} - 3x - 4 = A\left( {x + 2} \right)\left( {x - 1} \right) + Bx\left( {x - 1} \right) + Cx\left( {x + 2} \right)\,\,\left( {\bf{1}} \right) \cr & {\text{Let }}x = 0{\text{ into the equation }}\left( {\bf{1}} \right) \cr & 4{\left( 0 \right)^2} - 3\left( 0 \right) - 4 = A\left( 2 \right)\left( { - 1} \right) + B\left( 0 \right) + C\left( 0 \right)\, \cr & - 4 = - 2A \to A = 2 \cr & {\text{Let }}x = - 2{\text{ into the equation }}\left( {\bf{1}} \right) \cr & 4{\left( { - 2} \right)^2} - 3\left( { - 2} \right) - 4 = A\left( 0 \right) + B\left( { - 2} \right)\left( { - 2 - 1} \right) + C\left( 0 \right)\,\, \cr & 18 = 6B \to B = 3 \cr & {\text{Let }}x = 1{\text{ into the equation }}\left( {\bf{1}} \right) \cr & 4{\left( 1 \right)^2} - 3\left( 1 \right) - 4 = A\left( 0 \right) + B\left( 0 \right) + C\left( 1 \right)\left( 3 \right)\,\, \cr & - 3 = C3 \to C = - 1 \cr & {\text{Use }}A,{\text{ }}B,\,\,\,{\text{ and }}C{\text{ to find the partial fraction decomposition}} \cr & \frac{{4{x^2} - 3x - 4}}{{x\left( {x + 2} \right)\left( {x - 1} \right)}} = \frac{2}{x} + \frac{3}{{x + 2}} - \frac{1}{{x - 1}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.