Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.4 Partial Fractions - 9.4 Exercises - Page 895: 16

Answer

$$\frac{3}{{2\left( {x + 1} \right)}} - \frac{3}{{2\left( {x + 3} \right)}}$$

Work Step by Step

$$\eqalign{ & \frac{3}{{\left( {x + 1} \right)\left( {x + 3} \right)}} \cr & {\text{The partial fraction decomposition is }} \cr & \frac{3}{{\left( {x + 1} \right)\left( {x + 3} \right)}} = \frac{A}{{x + 1}} + \frac{B}{{x + 3}} \cr & {\text{Multiply each side by }}\left( {x + 1} \right)\left( {x + 3} \right) \cr & 3 = A\left( {x + 3} \right) + B\left( {x + 1} \right)\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \cr & \cr & {\text{Let }}x = - 1{\text{ into the equation }}\left( 1 \right) \cr & 3 = A\left( { - 1 + 3} \right) + B\left( { - 1 + 1} \right) \cr & 3 = 2A \cr & A = \frac{3}{2} \cr & {\text{Let }}x = - 3{\text{ into the equation }}\left( 1 \right) \cr & 3 = A\left( { - 3 + 3} \right) + B\left( { - 3 + 1} \right) \cr & 3 = - 2B \cr & B = - \frac{3}{2} \cr & \cr & {\text{Use }}A{\text{ and }}B{\text{ to find the partial fraction decomposition}} \cr & \frac{3}{{\left( {x + 1} \right)\left( {x + 3} \right)}} = \frac{{3/2}}{{x + 1}} + \frac{{ - 3/2}}{{x + 3}} \cr & \frac{3}{{\left( {x + 1} \right)\left( {x + 3} \right)}} = \frac{3}{{2\left( {x + 1} \right)}} - \frac{3}{{2\left( {x + 3} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.