Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.4 Partial Fractions - 9.4 Exercises - Page 895: 27

Answer

$$\eqalign{ & {\text{Use }}A,{\text{ }}B,\,\,{\text{ and }}C{\text{ to find the partial fraction decomposition}} \cr & \frac{1}{{x\left( {2x + 1} \right)\left( {3{x^2} + 4} \right)}} = \cr} $$

Work Step by Step

$$\eqalign{ & \frac{1}{{x\left( {2x + 1} \right)\left( {3{x^2} + 4} \right)}} \cr & {\text{The partial fraction decomposition is }} \cr & \frac{1}{{x\left( {2x + 1} \right)\left( {3{x^2} + 4} \right)}} = \frac{A}{x} + \frac{B}{{2x + 1}} + \frac{{Cx + D}}{{3{x^2} + 4}} \cr & {\text{Multiply each side by }}\left( {x + 4} \right)\left( {3{x^2} + 1} \right) \cr & 1 = A\left( {2x + 1} \right)\left( {3{x^2} + 4} \right) + Bx\left( {3{x^2} + 4} \right) + x\left( {Cx + D} \right)\left( {2x + 1} \right)\,\,\,\,\,\,\,\,\left( 1 \right) \cr & {\text{Expand and combine like terms on the right}} \cr & 1 = 6A{x^3} + 3A{x^2} + 8Ax + 4A + 3B{x^3} + 4Bx + 2C{x^3} + C{x^2} \cr & \,\,\,\,\,\,\,\, + 2D{x^2} + Dx \cr & 1 = \left( {6A + 3B + 2C} \right){x^3} + \left( {3A + C\, + 2D} \right){x^2} + \left( {8A + 4B + 4D} \right)x + 4A \cr & {\text{Equating the coefficients}} \cr & 6A + 3B + 2C = 0 \cr & 3A + C\, + 2D = 0 \cr & 8A + 4B + 4D = 0 \cr & 4A = 1 \cr & {\text{Solving the system of equations we obtain}} \cr & A = \frac{1}{4},\,\,\,B = - \frac{3}{{28}},\,\,\,C = \frac{1}{{28}},\,\,\,D = - \frac{{11}}{{28}} \cr & {\text{Use }}A,{\text{ }}B,\,\,{\text{ and }}C{\text{ to find the partial fraction decomposition}} \cr & \frac{1}{{x\left( {2x + 1} \right)\left( {3{x^2} + 4} \right)}} = \frac{1}{{4x}} - \frac{3}{{28\left( {2x + 1} \right)}} + \frac{{x - 11}}{{28\left( {3{x^2} + 4} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.