Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.4 Partial Fractions - 9.4 Exercises - Page 895: 25

Answer

$$ - \frac{2}{{7\left( {x + 4} \right)}} + \frac{{6x - 3}}{{7\left( {3{x^2} + 1} \right)}}$$

Work Step by Step

$$\eqalign{ & \frac{{3x - 2}}{{\left( {x + 4} \right)\left( {3{x^2} + 1} \right)}} \cr & {\text{The partial fraction decomposition is }} \cr & \frac{{3x - 2}}{{\left( {x + 4} \right)\left( {3{x^2} + 1} \right)}} = \frac{A}{{x + 4}} + \frac{{Bx + C}}{{3{x^2} + 1}} \cr & {\text{Multiply each side by }}\left( {x + 4} \right)\left( {3{x^2} + 1} \right) \cr & 3x - 2 = A\left( {3{x^2} + 1} \right) + \left( {Bx + C} \right)\left( {x + 4} \right)\,\,\,\,\,\,\,\,\left( 1 \right) \cr & {\text{Expand and combine like terms on the right}} \cr & 3x - 2 = 3A{x^2} + A + B{x^2} + 4Bx + Cx + 4C \cr & 3x - 2 = \left( {3A + B} \right){x^2} + \left( {4B + C} \right)x + \left( {A + 4C} \right) \cr & {\text{Equating the coefficients}} \cr & A + 4C = - 2 \cr & 4B + C = 3 \cr & 3A + B = 0 \cr & {\text{Solving the system of equations we obtain}} \cr & A = - \frac{2}{7},\,\,\,B = \frac{6}{7},\,\,\,C = - \frac{3}{7} \cr & {\text{Use }}A,{\text{ }}B,\,\,{\text{ and }}C{\text{ to find the partial fraction decomposition}} \cr & \frac{{3x - 2}}{{\left( {x + 4} \right)\left( {3{x^2} + 1} \right)}} = - \frac{2}{{7\left( {x + 4} \right)}} + \frac{{6x - 3}}{{7\left( {3{x^2} + 1} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.