Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 9 - Systems and Matrices - 9.4 Partial Fractions - 9.4 Exercises - Page 895: 23

Answer

$$ - \frac{3}{{5{x^2}}} + \frac{3}{{5\left( {{x^2} + 5} \right)}}$$

Work Step by Step

$$\eqalign{ & \frac{{ - 3}}{{{x^2}\left( {{x^2} + 5} \right)}} \cr & {\text{The partial fraction decomposition is }} \cr & \frac{{ - 3}}{{{x^2}\left( {{x^2} + 5} \right)}} = \frac{A}{x} + \frac{B}{{{x^2}}} + \frac{{Cx + D}}{{{x^2} + 5}} \cr & {\text{Multiply each side by }}{x^2}\left( {{x^2} + 5} \right) \cr & - 3 = Ax\left( {{x^2} + 5} \right) + B\left( {{x^2} + 5} \right) + \left( {Cx + D} \right){x^2}\,\,\,\,\,\,\,\,\left( 1 \right) \cr & \cr & {\text{Expand and combine like terms on the right of }}\left( 1 \right) \cr & - 3 = A{x^3} + 5Ax + B{x^2} + 5B + C{x^3} + D{x^2}\, \cr & - 3 = \left( {A{x^3} + C{x^3}\,} \right) + \left( {B{x^2} + D{x^2}} \right) + 5Ax + 5B \cr & {\text{Equating the coefficients}} \cr & 5B = - 3,\,\,\,\,\,B = - \frac{3}{5} \cr & B + D = 0,\,\,\,\,D = \frac{3}{5} \cr & 5A = 0,\,\,\,A = 0 \cr & A + C = 0,\,\,C = 0 \cr & \cr & {\text{Use }}A,{\text{ }}B{\text{ and }}C{\text{ to find the partial fraction decomposition}} \cr & \frac{{ - 3}}{{{x^2}\left( {{x^2} + 5} \right)}} = \frac{0}{x} + \frac{{ - 3/5}}{{{x^2}}} + \frac{{3/5}}{{{x^2} + 5}} \cr & \frac{{ - 3}}{{{x^2}\left( {{x^2} + 5} \right)}} = - \frac{3}{{5{x^2}}} + \frac{3}{{5\left( {{x^2} + 5} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.