Answer
$$\eqalign{
& {\text{domain: }}\left[ { - 6,4} \right] \cr
& {\text{range: }}\left[ {3,7} \right] \cr
& {\text{Vertices: }}\left( { - 6, - 5} \right){\text{ and }}\left( {4,5} \right) \cr} $$
Work Step by Step
$$\eqalign{
& 4{x^2} + 8x + 25{y^2} - 250y = - 529 \cr
& \left( {4{x^2} + 8x} \right) + \left( {25{y^2} - 250y} \right) = - 529 \cr
& 4\left( {{x^2} + 2x} \right) + 25\left( {{y^2} - 10y} \right) = - 529 \cr
& {\text{Complete the square}} \cr
& 4\left( {{x^2} + 2x + 1} \right) + 25\left( {{y^2} - 10y + 25} \right) = - 529 + 4\left( 1 \right) + 25\left( {25} \right) \cr
& 4{\left( {x + 1} \right)^2} + 25{\left( {y - 5} \right)^2} = 100 \cr
& {\text{Divide both sides by 100}} \cr
& \frac{{{{\left( {x + 1} \right)}^2}}}{{25}} + \frac{{{{\left( {y - 5} \right)}^2}}}{4} = 1 \cr
& {\text{The equation of the ellipse is in the form }} \cr
& \frac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1\,\,\,\,\left( {a > b} \right) \cr
& a = 5,\,\,b = 2 \cr
& h = \, - 1,\,\,k = 5 \cr
& \cr
& {\text{Vertices: }}\left( {h \pm a,k} \right) \cr
& {\text{Vertices: }}\left( { - 1 - 5,5} \right){\text{ and }}\left( { - 1 + 5,5} \right) \cr
& {\text{Vertices: }}\left( { - 6, - 5} \right){\text{ and }}\left( {4,5} \right) \cr
& \cr
& {\text{The domain of the ellipse is }}\left[ {h - a,h + a} \right] \cr
& {\text{domain }}\left[ { - 6,4} \right] \cr
& \cr
& {\text{The range of the ellipse is }}\left[ {k - b,k + b} \right] \cr
& {\text{range }}\left[ {3,7} \right] \cr
& \cr
& {\text{Therefore,}} \cr
& {\text{domain: }}\left[ { - 6,4} \right] \cr
& {\text{range: }}\left[ {3,7} \right] \cr
& {\text{Vertices: }}\left( { - 6, - 5} \right){\text{ and }}\left( {4,5} \right) \cr
& \cr
& {\text{Graph}} \cr} $$