Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 10 - Analytic Geometry - Chapter 10 Test Prep - Review Exercises - Page 1001: 29

Answer

$$\eqalign{ & {\text{Vertices}}:\left( { \pm 8,0} \right) \cr & {\text{Asymptotes: }}y = \pm \frac{3}{4}x \cr & {\text{domain: }}\left( { - \infty , - 8} \right] \cup \left[ {8,\infty } \right) \cr & {\text{range: }}\left( { - \infty , + \infty } \right){\text{ }} \cr} $$

Work Step by Step

$$\eqalign{ & \frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1 \cr & {\text{The equation is written in the form }}\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1 \cr & \frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1,{\text{ then }}a = 8,\,\,b = 6 \cr & \cr & {\text{Therefore,}} \cr & {\text{Vertices: }}\left( { \pm a,0} \right):\left( { \pm 8,0} \right) \cr & \cr & {\text{Asymptotes: }}y = \pm \frac{b}{a}x \cr & {\text{Asymptotes: }}y = \pm \frac{3}{4}x \cr & \cr & {\text{The domain of the hyperbola is }}\left( { - \infty ,a} \right] \cup \left[ {a,\infty } \right) \cr & {\text{domain: }}\left( { - \infty , - 8} \right] \cup \left[ {8,\infty } \right) \cr & {\text{The range of the hyperbola is }}\left( { - \infty , + \infty } \right) \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.