Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 10 - Analytic Geometry - Chapter 10 Test Prep - Review Exercises - Page 1001: 31

Answer

$$\eqalign{ & {\text{domain: }}\left[ { - 5,3} \right] \cr & {\text{range: }}\left[ { - 3,5} \right] \cr} $$

Work Step by Step

$$\eqalign{ & \frac{{{{\left( {x + 1} \right)}^2}}}{{16}} + \frac{{{{\left( {y - 1} \right)}^2}}}{{16}} = 1 \cr & {\text{Multiply both sides by 16}} \cr & {\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} = 16 \cr & {\text{The equation is written in the form }}{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2} \cr & {\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} = 16,\,\,\,\,\,\,h = - 1,\,\,\,\,k = 1,\,\,\,\,\,r = 4 \cr & {\text{This equation represents a circle centered at }}\left( {h,k} \right):\left( { - 1,1} \right) \cr & {\text{Radius }}r = 4 \cr & {\text{The domain of the circle is }}\left[ {h - r,h + r} \right] \cr & {\text{domain: }}\left[ { - 5,3} \right] \cr & {\text{The range of the circle is }}\left[ {k - r,k + r} \right] \cr & {\text{range: }}\left[ { - 3,5} \right] \cr & \cr & {\text{Therefore,}} \cr & {\text{domain: }}\left[ { - 5,3} \right] \cr & {\text{range: }}\left[ { - 3,5} \right] \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.