## Precalculus (6th Edition) Blitzer

The statement is False and the correct solution is $\left[ \begin{array}{*{35}{l}} 1 & -3 & 0 & 5 \\ 0 & 1 & -2 & 7 \\ 2 & 0 & 1 & 4 \\ \end{array} \right]$.
Consider the system of given equations \begin{align} & {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z={{d}_{1}} \\ & {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z={{d}_{2}} \\ & {{a}_{3}}x+{{b}_{3}}y+{{c}_{3}}z={{d}_{3}} \end{align} The augmented matrix for above equations can be written as below: $\left[ \begin{array}{*{35}{l}} {{a}_{1}} & {{b}_{1}} & {{c}_{1}} & {{d}_{1}} \\ {{a}_{2}} & {{b}_{2}} & {{c}_{2}} & {{d}_{2}} \\ {{a}_{3}} & {{b}_{3}} & {{c}_{3}} & {{d}_{3}} \\ \end{array} \right]$ Therefore, the provided system of equations is: \begin{align} & x-3y=5 \\ & y-2z=7 \\ & 2x+z=4 \end{align} The augmented matrix is given by: $\left[ \begin{array}{*{35}{l}} 1 & -3 & 0 & 5 \\ 0 & 1 & -2 & 7 \\ 2 & 0 & 1 & 4 \\ \end{array} \right]$ Hence, the provided statement is false and the correct solution is $\left[ \begin{array}{*{35}{l}} 1 & -3 & 0 & 5 \\ 0 & 1 & -2 & 7 \\ 2 & 0 & 1 & 4 \\ \end{array} \right]$.