Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.1 - Matrix Solutions to Linear Systems - Exercise Set - Page 895: 60

Answer

Yes, the statement makes sense.

Work Step by Step

Consider the system of equations, $\begin{align} & x+y+z+w=-1 \\ & -x+4y+z-w=0 \\ & x-2y+z-2w=11 \\ & -x-2y+z+2w=-3 \end{align}$ First write the augmented matrix for the given system of equations: Augmented matrix is: $\left[ \left. \begin{matrix} 1 & 1 & 1 & 1 \\ -1 & 4 & 1 & -1 \\ 1 & -2 & 1 & -2 \\ -1 & -2 & 1 & 2 \\ \end{matrix} \right|\begin{matrix} -1 \\ 0 \\ 11 \\ -3 \\ \end{matrix} \right]$ Apply Gauss Jordan Elimination Method. Use row operation to reduce the matrix to row echelon form ${{R}_{2}}\to {{R}_{2}}+{{R}_{1}}$, gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 5 & 2 & 0 & -1 \\ 1 & -2 & 1 & -2 & 11 \\ -1 & -2 & 1 & 2 & -3 \\ \end{matrix} \right]$ ${{R}_{3}}\to {{R}_{3}}-{{R}_{1}}$, gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 5 & 2 & 0 & -1 \\ 0 & -3 & 0 & -3 & 12 \\ -1 & -2 & 1 & 2 & -3 \\ \end{matrix} \right]$ ${{R}_{4}}\to {{R}_{4}}+{{R}_{1}}$, gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 5 & 2 & 0 & -1 \\ 0 & -3 & 0 & -3 & 12 \\ 0 & -1 & 2 & 3 & -4 \\ \end{matrix} \right]$ ${{R}_{2}}\to \frac{1}{5}{{R}_{2}}$, gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & -3 & 0 & -3 & 12 \\ 0 & -1 & 2 & 3 & -4 \\ \end{matrix} \right]$ ${{R}_{3}}\to {{R}_{3}}+3{{R}_{2}}$, gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & 0 & \frac{6}{5} & -3 & \frac{57}{5} \\ 0 & -1 & 2 & 3 & -4 \\ \end{matrix} \right]$ ${{R}_{4}}\to {{R}_{4}}+{{R}_{2}}$, gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & 0 & \frac{6}{5} & -3 & \frac{57}{5} \\ 0 & 0 & \frac{12}{5} & 3 & -\frac{21}{5} \\ \end{matrix} \right]$ ${{R}_{3}}\to \frac{5}{6}{{R}_{3}}$, gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & 0 & 1 & -\frac{5}{2} & \frac{19}{2} \\ 0 & 0 & \frac{12}{5} & 3 & -\frac{21}{5} \\ \end{matrix} \right]$ ${{R}_{4}}\to {{R}_{4}}-\frac{12}{5}{{R}_{3}}$, gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & 0 & 1 & -\frac{5}{2} & \frac{19}{2} \\ 0 & 0 & 0 & 9 & -27 \\ \end{matrix} \right]$ ${{R}_{4}}\to \frac{1}{9}{{R}_{4}}$, gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & 0 & 1 & -\frac{5}{2} & \frac{19}{2} \\ 0 & 0 & 0 & 1 & -3 \\ \end{matrix} \right]$ ${{R}_{3}}\to {{R}_{3}}+\frac{5}{2}{{R}_{4}}$, gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -3 \\ \end{matrix} \right]$ ${{R}_{1}}\to {{R}_{1}}-{{R}_{4}}$, gives $\left[ \begin{matrix} 1 & 1 & 1 & 0 & 2 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -3 \\ \end{matrix} \right]$ ${{R}_{2}}\to {{R}_{2}}-\frac{2}{5}{{R}_{1}}$, gives $\left[ \begin{matrix} 1 & 1 & 1 & 0 & 2 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -3 \\ \end{matrix} \right]$ ${{R}_{1}}\to {{R}_{1}}-{{R}_{3}}$, gives $\left[ \begin{matrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -3 \\ \end{matrix} \right]$ ${{R}_{1}}\to {{R}_{1}}-{{R}_{2}}$, gives $\left[ \begin{matrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -3 \\ \end{matrix} \right]$ Thus, the solution is: $x=1,y=-1,z=2,w=-3$ Hence, the provided statement makes sense.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.