Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.1 - Matrix Solutions to Linear Systems - Exercise Set - Page 895: 61

Answer

Yes, the statement makes sense.

Work Step by Step

The provided statement makes sense. Consider the system of equation: $\begin{align} & x+y+z+w=-1 \\ & -x+4y+z-w=0 \\ & x-2y+z-2w=11 \\ & -x-2y+z+2w=-3 \end{align}$ First we will write the augmented matrix for the given system of equations: Augmented matrix: $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ -1 & 4 & 1 & -1 & 0 \\ 1 & -2 & 1 & -2 & 11 \\ -1 & -2 & 1 & 2 & -3 \\ \end{matrix} \right]$ Apply Gauss Jordan Elimination Method. By using row operation we will reduce the matrix to row echelon form ${{R}_{2}}\to {{R}_{2}}+{{R}_{1}}$ gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 5 & 2 & 0 & -1 \\ 1 & -2 & 1 & -2 & 11 \\ -1 & -2 & 1 & 2 & -3 \\ \end{matrix} \right]$ ${{R}_{3}}\to {{R}_{3}}-{{R}_{1}}$ gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 5 & 2 & 0 & -1 \\ 0 & -3 & 0 & -3 & 12 \\ -1 & -2 & 1 & 2 & -3 \\ \end{matrix} \right]$ ${{R}_{4}}\to {{R}_{4}}+{{R}_{1}}$ gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 5 & 2 & 0 & -1 \\ 0 & -3 & 0 & -3 & 12 \\ 0 & -1 & 2 & 3 & -4 \\ \end{matrix} \right]$ ${{R}_{2}}\to \frac{1}{5}{{R}_{2}}$ gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & -3 & 0 & -3 & 12 \\ 0 & -1 & 2 & 3 & -4 \\ \end{matrix} \right]$ ${{R}_{3}}\to {{R}_{3}}+3{{R}_{2}}$ gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & 0 & \frac{6}{5} & -3 & \frac{57}{5} \\ 0 & -1 & 2 & 3 & -4 \\ \end{matrix} \right]$ ${{R}_{4}}\to {{R}_{4}}+{{R}_{2}}$ gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & 0 & \frac{6}{5} & -3 & \frac{57}{5} \\ 0 & 0 & \frac{12}{5} & 3 & -\frac{21}{5} \\ \end{matrix} \right]$ ${{R}_{3}}\to \frac{5}{6}{{R}_{3}}$ gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & 0 & 1 & -\frac{5}{2} & \frac{19}{2} \\ 0 & 0 & \frac{12}{5} & 3 & -\frac{21}{5} \\ \end{matrix} \right]$ ${{R}_{4}}\to {{R}_{4}}-\frac{12}{5}{{R}_{3}}$ gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & 0 & 1 & -\frac{5}{2} & \frac{19}{2} \\ 0 & 0 & 0 & 9 & -27 \\ \end{matrix} \right]$ ${{R}_{4}}\to \frac{1}{9}{{R}_{4}}$ gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & 0 & 1 & -\frac{5}{2} & \frac{19}{2} \\ 0 & 0 & 0 & 1 & -3 \\ \end{matrix} \right]$ ${{R}_{3}}\to {{R}_{3}}+\frac{5}{2}{{R}_{4}}$ gives $\left[ \begin{matrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -3 \\ \end{matrix} \right]$ ${{R}_{1}}\to {{R}_{1}}-{{R}_{4}}$ gives $\left[ \begin{matrix} 1 & 1 & 1 & 0 & 2 \\ 0 & 1 & \frac{2}{5} & 0 & -\frac{1}{5} \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -3 \\ \end{matrix} \right]$ ${{R}_{2}}\to {{R}_{2}}-\frac{2}{5}{{R}_{1}}$ gives $\left[ \begin{matrix} 1 & 1 & 1 & 0 & 2 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -3 \\ \end{matrix} \right]$ ${{R}_{1}}\to {{R}_{1}}-{{R}_{3}}$ gives $\left[ \begin{matrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -3 \\ \end{matrix} \right]$ ${{R}_{1}}\to {{R}_{1}}-{{R}_{2}}$ gives $\left[ \begin{matrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -3 \\ \end{matrix} \right]$ Thus, $x=1,y=-1,z=2,w=-3$ For solving the provided system, it took 15 steps to reduce the augmented matrix into the row-echelon form. So, most of the time is used to reduce the augmented matrix into the row-echelon form. Hence, the provided statement makes sense.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.