Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 7 - Review Exercises - Page 877: 23

Answer

The partial fraction decomposition of the rational expression is $\frac{x}{\left( {{x}^{2}}+4 \right)}-\frac{4x}{{{\left( {{x}^{2}}+4 \right)}^{2}}}$

Work Step by Step

We know that the expression ${{x}^{2}}+4$ occurs multiple times in the denominator of the rational expression; therefore, for each power of ${{x}^{2}}+4$ assign an undefined constant factor in the denominator by the method of grouping as shown below: $\frac{{{x}^{3}}}{{{\left( {{x}^{2}}+4 \right)}^{2}}}=\frac{Ax+B}{\left( {{x}^{2}}+4 \right)}+\frac{Cx+D}{{{\left( {{x}^{2}}+4 \right)}^{2}}}$ Multiply both sides of the equation by ${{\left( {{x}^{2}}+4 \right)}^{2}}$: $\begin{align} & {{\left( {{x}^{2}}+4 \right)}^{2}}\cdot \frac{{{x}^{3}}}{{{\left( {{x}^{2}}+4 \right)}^{2}}}={{\left( {{x}^{2}}+4 \right)}^{2}}\left( \frac{Ax+B}{\left( {{x}^{2}}+4 \right)}+\frac{Cx+D}{{{\left( {{x}^{2}}+4 \right)}^{2}}} \right) \\ & {{\left( {{x}^{2}}+4 \right)}^{2}}\cdot \frac{{{x}^{3}}}{{{\left( {{x}^{2}}+4 \right)}^{2}}}={{\left( {{x}^{2}}+4 \right)}^{2}}\left( \frac{Ax+B}{\left( {{x}^{2}}+4 \right)} \right)+{{\left( {{x}^{2}}+4 \right)}^{2}}\left( \frac{Cx+D}{{{\left( {{x}^{2}}+4 \right)}^{2}}} \right) \end{align}$ And divide out the common factors: $\begin{align} & {{\left( {{x}^{2}}+4 \right)}^{2}}\cdot \frac{{{x}^{3}}}{{{\left( {{x}^{2}}+4 \right)}^{2}}}=\left( {{x}^{2}}+4 \right)\left( {{x}^{2}}+4 \right)\left( \frac{Ax+B}{\left( {{x}^{2}}+4 \right)} \right)+{{\left( {{x}^{2}}+4 \right)}^{2}}\left( \frac{Cx+D}{{{\left( {{x}^{2}}+4 \right)}^{2}}} \right) \\ & {{x}^{3}}=\left( {{x}^{2}}+4 \right)\left( Ax+B \right)+\left( Cx+D \right) \\ & {{x}^{3}}=A{{x}^{3}}+4Ax+B{{x}^{2}}+4B+Cx+D \\ & {{x}^{3}}=A{{x}^{3}}+B{{x}^{2}}+\left( 4A+C \right)x+\left( 4B+D \right) \end{align}$ Then, equate the coefficients of like terms of the equation to write a system of equations as shown below: $ A=1$ (I) $ B=0$ (II) $4A+C=0$ (III) $4B+D=0$ (IV) Put $ A=1$ in equation (III) to obtain the value of C: $\begin{align} & 4A+C=0 \\ & 4\left( 1 \right)+C=0 \\ & C=-4 \end{align}$ Put $ B=0$ in equation (IV) to obtain the value of D: $\begin{align} & 4B+D=0 \\ & 4\left( 0 \right)+D=0 \\ & D=0 \end{align}$ Put the values of $ A,\,\,B,\,\,C,\,\,\text{and }D $ in the given equation, and define the partial fraction decomposition: $\begin{align} & \frac{{{x}^{3}}}{{{\left( {{x}^{2}}+4 \right)}^{2}}}=\frac{Ax+B}{\left( {{x}^{2}}+4 \right)}+\frac{Cx+D}{{{\left( {{x}^{2}}+4 \right)}^{2}}} \\ & =\frac{\left( 1 \right)x+0}{\left( {{x}^{2}}+4 \right)}+\frac{\left( -4 \right)x+0}{{{\left( {{x}^{2}}+4 \right)}^{2}}} \\ & =\frac{x}{\left( {{x}^{2}}+4 \right)}-\frac{4x}{{{\left( {{x}^{2}}+4 \right)}^{2}}} \end{align}$ Hence, the partial fraction decomposition of the rational expression is $\frac{x}{\left( {{x}^{2}}+4 \right)}-\frac{4x}{{{\left( {{x}^{2}}+4 \right)}^{2}}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.