Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 7 - Analytic Trigonometry - 7.6 Double-angle and Half-angle Formulas - 7.6 Assess Your Understanding - Page 497: 18

Answer

(a) $ -\frac{\sqrt 3}{2}$ (b) $ -\frac{1}{2}$ (c) $ \frac{1}{2}$ (d) $ -\frac{\sqrt 3}{2}$

Work Step by Step

Given $sec\theta=2, csc\theta\lt0$, we know $\frac{3\pi}{2}\lt \theta\lt 2\pi$. We have $cos\theta=\frac{1}{2},sin\theta=-\frac{\sqrt 3}{2}$, and $\frac{3\pi}{4}\lt \frac{\theta}{2} \lt \pi$. (a) $sin(2\theta)=2sin\theta cos\theta=2(-\frac{\sqrt 3}{2})(\frac{1}{2})=-\frac{\sqrt 3}{2}$ (b) $cos(2\theta)=1-2sin^2(\theta)=1-2(-\frac{\sqrt 3}{2})^2=-\frac{1}{2}$ (c) $sin(\frac{\theta}{2})=\sqrt {\frac{1-cos\theta}{2}}=\sqrt {\frac{1-1/2}{2}}=\frac{1}{2}$ (d) $cos(\frac{\theta}{2})=-\sqrt {\frac{1+cos\theta}{2}}=-\sqrt {\frac{1+1/2}{2}}=-\frac{\sqrt 3}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.