Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 12 - Sequences; Induction; the Binomial Theorem - 12.2 Arithmetic Sequences - 12.2 Assess Your Understanding - Page 814: 15

Answer

We know that $\log_a x+\log_a y=\log_a (x\cdot y)$, In order for a sequence to be arithmetic, the difference of all consecutive terms must be constant. Hence here: $a_{n+1}-a_n=(\ln{3^{n+1}})-(\ln{3^{n}})=(\ln{(3^{n}\cdot3)})-(\ln{3^{n}})=(\ln{3^{n}+\ln{3}})-(\ln{3^{n}})=\ln{3}$, thus it is an arithmetic sequence. $a_1=\ln{3}$ $a_2=\ln{9}$ $a_3=\ln{27}$ $a_4=\ln{81}$

Work Step by Step

We know that $\log_a x+\log_a y=\log_a (x\cdot y)$, In order for a sequence to be arithmetic, the difference of all consecutive terms must be constant. Hence here: $a_{n+1}-a_n=(\ln{3^{n+1}})-(\ln{3^{n}})=(\ln{(3^{n}\cdot3)})-(\ln{3^{n}})=(\ln{3^{n}+\ln{3}})-(\ln{3^{n}})=\ln{3}$, thus it is an arithmetic sequence. $a_1=\ln{3^{1}}=\ln{3}$ $a_2=\ln{3^{2}}=\ln{9}$ $a_3=\ln{3^{3}}=\ln{27}$ $a_4=\ln{3^{4}}=\ln{81}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.