Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.5 Rational Expressions - A.5 Assess Your Understanding - Page A42: 28

Answer

$\dfrac{x^2+7x-1}{(x-3)(x+8)}$

Work Step by Step

Factor $x^2+5x-24$. With $a=1$ and $c=-24$, $ac=1(-24)=-24$. The factors of $-24$ whose sum is equal to $b=5$ are $8$ and $-3$. Rewrite $5x$ as $8x-3x$ to obtain: $=x^2+8x-3x-24$ Group the terms. $=(x^2+8x)+(-3x-24)$ Factor each group. $=x(x+8)-3(x+8)$ Factor out $(x+8)$. $=(x+8)(x-3)$ Substitute back the factors into the given expression. $=\dfrac{x}{x-3}-\dfrac{x+1}{(x+8)(x-3)}$ The LCD is $(x+8)(x-3)$. Make the expressions similar by multiplying $x+8$ to both the numerator and denominator of the first exprssion to obain: $=\dfrac{x}{x-3}\cdot \dfrac{x+8}{x+8}-\dfrac{x+1}{(x+8)(x-3)}$ Simplify. $=\dfrac{x(x+8)}{(x-3)(x+8)}-\dfrac{x+1}{(x+8)(x-3)}$ Add numerators because denominators are same. $=\dfrac{x(x+8)-(x+1)}{(x-3)(x+8)}$ Use distributive property. $=\dfrac{x^2+8x-x-1}{(x-3)(x+8)}$ Simplify. $=\dfrac{x^2+7x-1}{(x-3)(x+8)}$ The numerator can no longer be factored. Hence, the lowest term is: $\dfrac{x^2+7x-1}{(x-3)(x+8)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.