Functions Modeling Change: A Preparation for Calculus, 5th Edition

Published by Wiley
ISBN 10: 1118583191
ISBN 13: 978-1-11858-319-7

Chapter 4 - Exponential Functions - 4.2 Comparing Exponential and Linear Functions - Exercises and Problems for Section 4.2 - Exercises and Problems - Page 155: 29

Answer

$R(t)=2.001(1.030)^t$

Work Step by Step

Given $$ \begin{array}{c|c|c|c} \hline t & 5 & 9 & 15 \\ \hline R(t) & 2.32 & 2.61 & 3.12 \\ \hline \end{array} $$ A function is linear if the rate of change is a constant. $$ \begin{aligned} &\frac{2.61-2.32}{9-5}=0.0725\\ &\frac{3.12-2.61}{15}=0.085 \text {, } \end{aligned} $$ The function is not linear. We now check the ratios to see if the function is exponential. $$ \begin{aligned} \frac{R(9)}{R(5)} & =\frac{a b^9}{a b^5}=\frac{2.61}{2.32} \\ \frac{b^9}{b^5} & =\frac{2.61}{2.32} \\ b^4 & =\frac{2.61}{2.32} \\ b & =\left(\frac{2.61}{2.32}\right)^{\frac{1}{4}} \approx 1.030 \end{aligned} $$ $$ \begin{aligned} \frac{R(9)}{R(5)}=\frac{a b^9}{a b^5} & =\frac{2.61}{2.32} \\ b^4 & =1.125 \\ b & =1.030 . \end{aligned} $$ We can safely assume that the function is approximately exponential. Let $R(t) = ab^t$, Now: $R(t)=a(1.030)^t$ Find $b$ from: $$ \begin{aligned} R(5) & =a(1.030)^5 \\ 2.32 & =a(1.030)^5 \\ a & =\frac{2.32}{1.030^5} \approx 2.001 \end{aligned} $$ $$ \text { Hence, } R(t)=2.001(1.030)^t $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.