Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.8 - Page 327: 6

Answer

**Any** sequence of the form \(b_n = C\,3^n + D\,(-2)^n\) satisfies the recurrence \(b_k = b_{k-1} + 6\,b_{k-2}\).

Work Step by Step

We want to show that for the sequence \[ b_n \;=\; C \, 3^n \;+\; D \,\bigl(-2\bigr)^n, \quad n \ge 0, \] (where \(C\) and \(D\) are arbitrary real constants), the terms satisfy the second‐order linear recurrence \[ b_k \;=\; b_{k-1} \;+\; 6\,b_{k-2} \quad\text{for all integers }k \ge 2. \] --- ## Proof 1. **Write down the relevant terms** from the explicit formula: \[ b_k = C\,3^k + D\,(-2)^k, \quad b_{k-1} = C\,3^{k-1} + D\,(-2)^{k-1}, \quad b_{k-2} = C\,3^{k-2} + D\,(-2)^{k-2}. \] 2. **Compute \(b_{k-1} + 6\,b_{k-2}\)** and simplify: \[ b_{k-1} + 6\,b_{k-2} \;=\; \bigl[C\,3^{k-1} + D\,(-2)^{k-1}\bigr] \;+\; 6\,\bigl[C\,3^{k-2} + D\,(-2)^{k-2}\bigr]. \] Group the \(C\)‐terms and the \(D\)‐terms: \[ = C\bigl[3^{k-1} + 6\,3^{k-2}\bigr] \;+\; D\bigl[(-2)^{k-1} + 6\,(-2)^{k-2}\bigr]. \] Factor out common powers: - For the \(C\)‐part: \[ 3^{k-1} = 3^{k-2} \cdot 3, \quad 3^{k-1} + 6\,3^{k-2} = 3^{k-2}\,\bigl(3 + 6\bigr) = 9\,3^{k-2} = 3^2\,3^{k-2} = 3^k. \] - For the \(D\)‐part: \[ (-2)^{k-1} = (-2)^{k-2}\,\bigl(-2\bigr), \quad (-2)^{k-1} + 6\,(-2)^{k-2} = (-2)^{k-2}\,\bigl[-2 + 6\bigr] = 4\,(-2)^{k-2} = (-2)^2 \,(-2)^{k-2} = (-2)^k. \] Putting these back in, we get \[ b_{k-1} + 6\,b_{k-2} = C\,3^k + D\,(-2)^k = b_k. \] Hence, \[ \boxed{b_k \;=\; b_{k-1} + 6\,b_{k-2},\quad \text{for all } k \ge 2.} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.