Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.8 - Page 327: 16

Answer

\[ \boxed{ s_k = \frac{3 + 2\sqrt{3}}{6}\,\bigl(1 + \sqrt{3}\bigr)^k \;+\; \frac{3 - 2\sqrt{3}}{6}\,\bigl(1 - \sqrt{3}\bigr)^k, } \quad k \ge 0. \]

Work Step by Step

We have the second‐order linear recurrence \[ s_k \;=\; 2\,s_{k-1} \;+\; 2\,s_{k-2}, \quad \text{for }k \ge 2, \quad \text{with } s_0 = 1,\; s_1 = 3. \] Below is a step‐by‐step solution to find its closed‐form formula. --- ## 1. Characteristic Equation We look for solutions of the form \(s_k = r^k\). Substituting into the recurrence: \[ r^k \;=\; 2\,r^{k-1} \;+\; 2\,r^{k-2}. \] Divide by \(r^{k-2}\) (assuming \(r\neq0\)): \[ r^2 = 2\,r \;+\; 2, \] which rearranges to \[ r^2 \;-\; 2\,r \;-\; 2 = 0. \] This is the **characteristic equation**. Let’s solve it using the quadratic formula: \[ r = \frac{2 \pm \sqrt{(2)^2 \;+\; 4 \cdot 2}}{2} = \frac{2 \pm \sqrt{4 + 8}}{2} = \frac{2 \pm \sqrt{12}}{2} = \frac{2 \pm 2\sqrt{3}}{2} = 1 \;\pm\; \sqrt{3}. \] Hence the two (distinct) roots are \[ r_1 = 1 + \sqrt{3}, \quad r_2 = 1 - \sqrt{3}. \] --- ## 2. General Form of the Solution Because the characteristic equation has two distinct real roots \(r_1\) and \(r_2\), the general solution of the recurrence is \[ s_k = A\,(1 + \sqrt{3})^k \;+\; B\,(1 - \sqrt{3})^k, \] for some constants \(A\) and \(B\). --- ## 3. Determine \(A\) and \(B\) Using the Initial Conditions We have: \[ s_0 = 1, \quad s_1 = 3. \] ### Condition at \(k=0\) \[ s_0 = A\,(1 + \sqrt{3})^0 + B\,(1 - \sqrt{3})^0 = A + B = 1. \] So \[ (1)\quad A + B = 1. \] ### Condition at \(k=1\) \[ s_1 = A\,(1 + \sqrt{3})^1 + B\,(1 - \sqrt{3})^1 = A\,(1 + \sqrt{3}) + B\,(1 - \sqrt{3}) = 3. \] So \[ (2)\quad A(1 + \sqrt{3}) + B(1 - \sqrt{3}) = 3. \] --- ## 4. Solve for \(A\) and \(B\) From equation (1), \(B = 1 - A\). Substitute into (2): \[ A(1 + \sqrt{3}) \;+\; \bigl(1 - A\bigr)\,(1 - \sqrt{3}) = 3. \] Expand: \[ A(1 + \sqrt{3}) \;+\; \bigl[\,1 - \sqrt{3}\bigr] \;-\; A(1 - \sqrt{3}) = 3. \] Group the \(A\)‐terms carefully: - \(A(1 + \sqrt{3}) - A(1 - \sqrt{3}) = A\bigl[(1 + \sqrt{3}) - (1 - \sqrt{3})\bigr] = A\bigl(\sqrt{3} + \sqrt{3}\bigr) = 2\sqrt{3}\,A.\) Hence the entire left side becomes \[ 2\sqrt{3}\,A \;+\; (1 - \sqrt{3}). \] So the equation is \[ 2\sqrt{3}\,A + (1 - \sqrt{3}) = 3. \] Isolate \(A\): \[ 2\sqrt{3}\,A = 3 - (1 - \sqrt{3}) = 3 - 1 + \sqrt{3} = 2 + \sqrt{3}. \] Therefore \[ A = \frac{2 + \sqrt{3}}{2\sqrt{3}}. \] You can leave \(A\) in this form or simplify by multiplying numerator and denominator by \(\sqrt{3}\): \[ A = \frac{2 + \sqrt{3}}{2\sqrt{3}} \,\times\, \frac{\sqrt{3}}{\sqrt{3}} = \frac{(2 + \sqrt{3})\,\sqrt{3}}{2\cdot 3} = \frac{2\sqrt{3} + 3}{6}. \] Either form is correct. Let’s write \[ A = \frac{3 + 2\sqrt{3}}{6}. \] Since \(B = 1 - A\), \[ B = 1 - \frac{3 + 2\sqrt{3}}{6} = \frac{6 - (3 + 2\sqrt{3})}{6} = \frac{3 - 2\sqrt{3}}{6}. \] able as long as it clearly shows the dependence on \(k\).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.