Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.8 - Page 327: 4

Answer

1. **(a)** \(b_0 = 0, b_1 = 5\): \[ C = 1,\; D = -1, \quad \text{so } b_n = 3^n - (-2)^n, \quad b_2 = 5. \] 2. **(b)** \(b_0 = 3, b_1 = 4\): \[ C = 2,\; D = 1, \quad \text{so } b_n = 2\cdot 3^n + (-2)^n, \quad b_2 = 22. \]

Work Step by Step

We have a sequence \(\{b_n\}\) defined by the explicit formula \[ b_n \;=\; C \cdot 3^n \;+\; D \cdot (-2)^n, \quad\text{for all integers } n \ge 0, \] where \(C\) and \(D\) are real constants to be determined. --- ## (a) Find \(C\) and \(D\) so that \(b_0 = 0\) and \(b_1 = 5\). Then compute \(b_2\). 1. **Initial conditions**: \[ b_0 = C \cdot 3^0 + D \cdot (-2)^0 = C + D = 0, \] \[ b_1 = C \cdot 3^1 + D \cdot (-2)^1 = 3C \;+\; (-2)D = 5. \] 2. **Solve for \(C\) and \(D\)**: From \(b_0 = 0\), we get \[ C + D = 0 \quad\Longrightarrow\quad D = -C. \] Substitute \(D = -C\) into \(b_1 = 5\): \[ 3C + (-2)\bigl(-C\bigr) = 3C + 2C = 5C = 5, \] hence \(C = 1\). Then \(D = -1\). 3. **Thus**: \[ C = 1,\quad D = -1, \] so \[ b_n = 3^n \;-\; (-2)^n. \] 4. **Compute \(b_2\)**: \[ b_2 = 3^2 \;-\; (-2)^2 = 9 \;-\; 4 = 5. \] --- ## (b) Find \(C\) and \(D\) so that \(b_0 = 3\) and \(b_1 = 4\). Then compute \(b_2\). 1. **Initial conditions**: \[ b_0 = C \cdot 3^0 + D \cdot (-2)^0 = C + D = 3, \] \[ b_1 = C \cdot 3^1 + D \cdot (-2)^1 = 3C + (-2)D = 4. \] 2. **Solve for \(C\) and \(D\)**: From \(b_0 = 3\), \[ C + D = 3 \quad\Longrightarrow\quad D = 3 - C. \] Substitute into \(b_1 = 4\): \[ 3C + (-2)\bigl(3 - C\bigr) = 3C - 6 + 2C = 5C - 6 = 4. \] Hence \(5C = 10\), so \(C = 2\). Then \(D = 3 - 2 = 1\). 3. **Thus**: \[ C = 2,\quad D = 1, \] so \[ b_n = 2 \cdot 3^n \;+\; 1 \cdot (-2)^n. \] 4. **Compute \(b_2\)**: \[ b_2 = 2 \cdot 3^2 + 1 \cdot (-2)^2 = 2 \cdot 9 + 4 = 18 + 4 = 22. \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.