Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.8 - Page 327: 5

Answer

For every \(k \ge 2\), \[ 3\,a_{k-1} - 2\,a_{k-2} \;=\; a_k, \] which proves that any sequence of the form \(a_n = C\,2^n + D\) satisfies \[ \boxed{a_k = 3\,a_{k-1} - 2\,a_{k-2}, \quad k \ge 2.} \]

Work Step by Step

We want to show that for any real constants \(C\) and \(D\), the sequence defined by \[ a_n \;=\; C\,2^n \;+\; D, \quad \text{for all integers } n \ge 0, \] satisfies the second‐order linear recurrence \[ a_k \;=\; 3\,a_{k-1} \;-\; 2\,a_{k-2}, \quad \text{for all integers } k \ge 2. \] --- ## Proof **Step 1. Write down the relevant terms.** From the explicit formula: \[ a_k = C\,2^k + D,\quad a_{k-1} = C\,2^{k-1} + D,\quad a_{k-2} = C\,2^{k-2} + D. \] --- **Step 2. Compute the right‐hand side of the recurrence.** \[ 3\,a_{k-1} - 2\,a_{k-2} = 3\bigl(C\,2^{k-1} + D\bigr) \;-\; 2\bigl(C\,2^{k-2} + D\bigr). \] Distribute and group like terms: \[ = 3C\,2^{k-1} \;+\; 3D \;-\; 2C\,2^{k-2} \;-\; 2D = \bigl(3C\,2^{k-1} \;-\; 2C\,2^{k-2}\bigr) \;+\; (3D - 2D). \] Simplify each group: - Factor out \(2^{k-2}\) from the terms involving \(C\): \[ 3C\,2^{k-1} - 2C\,2^{k-2} = 2^{k-2} \bigl(3C \cdot 2 - 2C\bigr) = 2^{k-2} \bigl(6C - 2C\bigr) = 2^{k-2} \cdot 4C = 4C\,2^{k-2} = C\,2^k. \] - For the \(D\) terms: \(3D - 2D = D\). Thus, \[ 3\,a_{k-1} - 2\,a_{k-2} = C\,2^k + D = a_k. \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.