Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 5 - Sequences, Mathematical Induction, and Recursion - Exercise Set 5.8 - Page 327: 18

Answer

See explanation

Work Step by Step

We have two sequences \(\{s_k\}\) and \(\{t_k\}\) each satisfying the same second‐order linear homogeneous recurrence with constant coefficients: \[ \begin{aligned} s_k &= 5\,s_{k-1} \;-\; 4\,s_{k-2},\\ t_k &= 5\,t_{k-1} \;-\; 4\,t_{k-2}, \end{aligned} \quad \text{for all integers } k \ge 2. \] We want to show that the sequence \(\{2s_k + 3t_k\}\) also satisfies this same recurrence: \[ 2s_k + 3t_k \;\stackrel{?}{=}\; 5\bigl(2s_{k-1} + 3t_{k-1}\bigr) \;-\; 4\bigl(2s_{k-2} + 3t_{k-2}\bigr). \] --- ## Proof Let \[ u_k \;=\; 2\,s_k \;+\; 3\,t_k. \] Then \[ u_{k-1} = 2\,s_{k-1} + 3\,t_{k-1}, \quad u_{k-2} = 2\,s_{k-2} + 3\,t_{k-2}. \] We check whether \(u_k\) satisfies the same recurrence: \[ 5\,u_{k-1} \;-\; 4\,u_{k-2} = 5\bigl(2\,s_{k-1} + 3\,t_{k-1}\bigr) \;-\; 4\bigl(2\,s_{k-2} + 3\,t_{k-2}\bigr). \] Distribute: \[ = 2\bigl(5\,s_{k-1}\bigr) + 3\bigl(5\,t_{k-1}\bigr) \;-\; 2\bigl(4\,s_{k-2}\bigr) \;-\; 3\bigl(4\,t_{k-2}\bigr). \] Group the terms with \(s\) and \(t\): \[ = 2\Bigl(5\,s_{k-1} - 4\,s_{k-2}\Bigr) \;+\; 3\Bigl(5\,t_{k-1} - 4\,t_{k-2}\Bigr). \] But from the given recurrences, \(\;5\,s_{k-1} - 4\,s_{k-2} = s_k\)\; and \(\;5\,t_{k-1} - 4\,t_{k-2} = t_k.\) Therefore, \[ 5\,u_{k-1} \;-\; 4\,u_{k-2} = 2\,s_k \;+\; 3\,t_k = u_k. \] Hence \(u_k\) satisfies \[ u_k \;=\; 5\,u_{k-1} \;-\; 4\,u_{k-2}, \] which is exactly the same second‐order linear recurrence. This completes the proof.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.