Answer
$\dfrac{1}{2}$ or, $50 \%$
Work Step by Step
The probability that the point $T$ lies in the segment $\overline{CH}$ can be computed as:
$P(\text{point on $\overline{CH}$})=\dfrac{CH}{AK}$
Where, $CH=7-2=5$ and $Ak=10-0=10$
Now, $P(\text{point on $\overline{CH}$})=\dfrac{CH}{AK}=\dfrac{5}{10}=\dfrac{1}{2}$ or, $50 \%$