Answer
$\dfrac{3}{5}$ or, $60 \%$
Work Step by Step
The probability that $P$ lies on the segment $\overline{DJ}$ can be computed as:
$P(\text{point on $\overline{DJ}$})=\dfrac{DJ}{AK}$
Where, $DJ=9-3=6$ and $Ak=10-0=10$
Now, $P(\text{point on $\overline{DJ}$})=\dfrac{6}{10}=\dfrac{3}{5}$ or, $60 \%$